Équations différentielles

On fixe $k \in \mathbb{R}^+$.

On se propose d'étudier l'équation différentielle suivante :

$$(1 - x^2)y'' - xy' + k^2y = 0 \quad (E)$$

Si I désigne un intervalle de \mathbb{R} (non vide et non réduit à un point), on appelle solution de (E) sur I toute fonction f deux fois dérivable sur I vérifiant : $\forall x \in I$ $(1-x^2)f''(x) - xf'(x) + k^2f(x) = 0$.

Partie I : Préliminaires

1. Montrer que $\forall x \in [1, +\infty[$ $\operatorname{argch}(x) = \ln(1 + \sqrt{x^2 - 1}).$

Partie II : On suppose dans cette partie que k = 0

- 1. Déterminer une équation différentielle linéaire du première ordre (E_1) vérifiée par y' si, et seulement si, y est solution de (E).
- 2. (a) Résoudre l'équation (E_1) sur]-1,1[et en déduire les solutions de (E) sur]-1,1[.
 - (b) Montrer qu'il existe une unique solution f_1 de (E) sur]-1,1[tel que $:f_1(0)=0$ et $f'_1(0)=1$.
- 3. (a) Résoudre l'équation (E_1) sur $]1, +\infty[$ et en déduire les solutions de (E) sur $]1, +\infty[$.
 - (b) Préciser les fonctions f_2 solutions de (E) sur $]1, +\infty[$ telles que : $\lim_{x \to 1^+} f_2(x) = \lim_{x \to 1^-} f_1(x)$. On note ℓ cette limite et on fixe f_2 une de ces solutions.
- 4. La fonction g définie par :

$$\begin{cases} g(x) = f_1(x) & \text{si } x \in]-1,1[\\ g(1) = \ell\\ g(x) = f_2(x) & \text{si } x \in]1,+\infty[\end{cases}$$

est-elle solution de (E) sur $]-1,+\infty[$?

Partie III : On suppose k > 0 et on détermine les solutions de (E) définies sur]-1,1[

1. Montrer que y est solution de (E) sur si, et seulement si, la fonction Y définie par $Y(t) = y(\sin(t))$ pour $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, vérifie l'équation différentielle :

$$Y'' + k^2 Y = 0 \quad (E_2)$$

- 2. (a) En déduire les solutions de (E) sur]-1,1[.
 - (b) Préciser ces solutions lorsque k = 1.

Partie IV : On suppose que k > 0, et on détermine les solutions de (E) sur $]1, +\infty[$ et sur $]-\infty, -1[$.

1. Montrer que y est solution de (E) sur $]1, +\infty[$ si, et seulement si, la fonction Z définie par $Z(t) = y(\operatorname{ch}(t))$ pour $t \in]0, +\infty[$, vérifie l'équation différentielle

$$Z'' - k^2 Z = 0 \quad (E_3)$$

2. En déduire que les solutions de (E) sur $]1, +\infty[$ sont données par

$$y(x) = \lambda \left(x + \sqrt{x^2 - 1} \right)^k + \mu \left(x + \sqrt{x^2 - 1} \right)^{-k}$$

où λ et μ désignent deux nombres réels arbitraires.

3. Déterminer de manière analogue les solutions de (E) sur $]-\infty,-1[$.

Partie V: On suppose que k=5, et on recherche les solutions polynomiales de (E).

1. Si P est un polynôme non nul solution de (E) sur \mathbb{R} , préciser son degré.

Indication: On écrira
$$P$$
 sous la forme $P(x) = \sum_{k=0}^{n} a_k x^k$ avec $a_n \neq 0$.

- 2. Pour $\theta \in \mathbb{R}$, exprimer $\cos(5\theta)$ et $\sin(5\theta)$ en fonction de $\cos(\theta)$ et de $\sin(\theta)$. Vérifier que $\sin(5\theta)$ peut s'exprimer comme un polynôme relativement à $\sin(\theta)$.
- 3. De l'étude faite dans la partie III, déduire les solutions polynomiales de (E).