Équations différentielles - Géométrie

Exercice 1. Une équation différentielle du second ordre

Soit k et ω deux réels strictement positifs. On considère l'équation suivante :

$$y'' + k^2 y = \cos(\omega t) \quad (E)$$

1. Résoudre l'équation (E).

Indication: Une distinction de cas sera nécessaire.

- 2. (a) Déterminer la solution y_{ω} de (E) telle que : $y_{\omega}(0) = y'_{\omega}(0) = 0$.
 - (b) Montrer que la fonction y_{ω} est toujours bornée sauf si ω est égale à un nombre réel ω_0 que l'on exprimera en fonction de k.

Indication: Pour ce cas particulier, on déterminera une suite (u_n) telle que : $\lim_{n\to\infty} y_{\omega_0}(u_n) = +\infty$.

(c) Montrer que : $\forall t \in \mathbb{R} \quad \lim_{\omega \longrightarrow \omega_0} y_{\omega}(t) = y_{\omega_0}(t).$

Indication: On pourra exprimer $y_{\omega}(t)$ uniquement en fonction de t, ω et ω_0 .

(d) Pour tout ω distinct de ω_0 , on note m_ω et M_ω deux réels tels que : $\forall t \in \mathbb{R}$ $m_\omega \leq y_\omega(t) \leq M_\omega$. Par une simple interprétation (*i.e.* sans en donner une preuve rigoureuse), que peut-on dire de m_ω et M_ω lorsque ω tend vers ω_0 ?

Exercice 2. Une équation linéaire d'ordre 3

On veux résoudre l'équation suivante :

$$y''' - 3y'' + 3y' - y = x^2 + x + 1 + \frac{2xe^x}{(1+x^2)^2} \quad (E)$$

On note (E_0) l'équation différentielle suivante :

$$y''' - 3y'' + 3y' - y = 0 \quad (E_0)$$

Cette équation est appelée équation homogène associée à (E).

- 1. Structure des solutions de (E):
 - (a) Soient f une fonction trois fois dérivable et f_p une solution particulière de (E). Montrer que la fonction f est une solution de (E) si, et seulement si, la fonction $f - f_p$ est une solution de (E_0) .
 - (b) Soit f_1 une solution particulière de l'équation suivante :

$$y''' - 3y'' + 3y' - y = x^2 + x + 1 \qquad (E_1)$$

Soit f_2 une solution particulière de l'équation suivante :

$$y''' - 3y'' + 3y' - y = \frac{2xe^x}{(1+x^2)^2} \qquad (E_2)$$

Montrer que $f_1 + f_2$ est une solution de (E).

- 2. Résolution de l'équation homogène :
 - (a) Vérifier que e^x est solution de (E_0) .
 - (b) Soit f une fonction trois fois dérivable sur \mathbb{R} . Soit g la fonction telle que $f(x) = e^x g(x)$ pour tout x réel (on justifiera proprement l'existence de g). Déterminer (E') une équation linéaire d'ordre 3 très simple telle que : f est solution de (E_0) si et seulement si g est solution de (E').
 - (c) Résoudre (E') et en déduire les solutions de (E_0) .
- 3. Résolution de (E):
 - (a) Déterminer une solution particulière de (E_1) .
 - (b) En s'inspirant de la question (2b), déterminer une solution particulière de (E_2) .
 - (c) En déduire, sans calcul supplémentaire, la solution générale de (E).

Exercice 3. Points alignés

On considère deux droites parallèles distinctes Δ et Δ' .

Soient A, B et C trois points distincts de Δ .

Soient A', B' et C' trois points distincts de Δ' .

On se place dans le repère $\mathcal{R} = (A, \overrightarrow{AB}, AA')$.

Soient $P = (AB') \cap (A'B)$, $Q = (AC') \cap (A'C)$ et $R = (BC') \cap (B'C)$.

On suppose d'abord que ces trois points sont bien définies.

- 1. Faire une figure soignée.
- 2. Préciser les coordonnées de A, B et A'.
- 3. Sous quelles formes s'écrivent les coordonnées de C, B' et C'?

 On exprimera ces coordonnées, respectivement, à l'aide des variables c, β et γ .
- 4. Déterminer, en fonction de c, β et γ , les coordonnées de P, Q et R.
- 5. Montrer que les points $P,\,Q$ et R sont alignés.
- 6. On suppose que (A'B) et (AB') sont parallèles. Le point P n'est alors plus défini. On suppose que Q et R sont bien définis et distincts.

Montrer que, dans ce cas, la droite (QR) est parallèle aux droites (AB') et (A'B).

Les devises Shadok

EN ESSAYANT CONTINUELLEMENT ON FINIT PAR REUSSIR. DONC: PLUS 4A RATE, PLUS ON A DECHANCES QUE GA MARCHE.