Polynômes - Suites

Problème 1. Étude des racines d'un polynôme - Calcul de $\zeta(2)$

1. Questions préliminaires

- (a) Soit $P \in \mathbb{C}[X]$ un polynôme de degré $n \geq 1$: $P(X) = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$. Rappeler la formule permettant de calculer la somme $\sigma_1 = \sum_{i=1}^n \alpha_i = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ des racines $(\alpha_i)_{i=1}^n$ de P en fonction de ses coefficients $a_k, k \in [0, n]$.
- (b) Pour tout $\varphi \in \mathbb{R}$ tel que $\phi \neq 0[\pi]$, exprimer $\cot^2(\varphi)$ en fonction de $\sin(\varphi)$ où $\cot^2(\varphi)$ cotan $\varphi = \frac{\cos \varphi}{\sin \varphi}$.
- ${\bf 2}$. ${\bf a}$. Soient $p\in\mathbb{N}$ et $\varphi\in\mathbb{R}.$ Démontrer l'égalité :

$$\sin((2p+1)\varphi) = \sum_{k=0}^{p} (-1)^k \binom{2p+1}{2k+1} \cos^{2p-2k}(\varphi) \sin^{2k+1}(\varphi)$$

b . En déduire que pour tout entier $p \in \mathbb{N}$ et pour tout réel $\varphi \neq k\pi$ où $k \in \mathbb{Z}$, on a :

$$\sin\left((2p+1)\varphi\right) = \sin^{2p+1}(\varphi) \sum_{k=0}^{p} (-1)^k \binom{2p+1}{2k+1} \left(\cot^2\varphi\right)^{p-k}$$

- ${\bf 3}$. Soit $p\in \mathbb{N}^*$ et $P\in \mathbb{R}[X]$ le polynôme défini par : $P(X)=\sum_{k=0}^p{(-1)^k} \binom{2p+1}{2k+1}X^{p-k}$
 - **a**. Pour tout entier $k \in [1, p]$, on pose $\gamma_k = \operatorname{cotan}^2\left(\frac{k\pi}{2p+1}\right)$. Calculer $P(\gamma_k)$ pour tout $k \in [1, p]$.
 - ${\bf b}$. Vérifier que le polynôme P possède p racines distinctes, que l'on précisera.
 - c . En déduire les égalités :

$$\sum_{k=1}^{p} \cot^2 \left(\frac{k\pi}{2p+1} \right) = \frac{p(2p-1)}{3} \quad \text{et} \quad \sum_{k=1}^{p} \frac{1}{\sin^2 \left(\frac{k\pi}{2p+1} \right)} = \frac{2p(p+1)}{3}$$

- **4**. **a**. Démontrer que pour tout réel $\varphi \in]0, \frac{\pi}{2}[, 0 < \sin \varphi < \varphi < \tan \varphi.$
 - **b**. En déduire que pour tout $p \in \mathbb{N}^*$, on a :

$$\frac{p(2p-1)}{3} < \frac{(2p+1)^2}{\pi^2} \sum_{k=1}^p \frac{1}{k^2} < \frac{2p(p+1)}{3}$$

c . Soit la suite $(S_n)_{n\geq 1}$ définie par $S_n=\sum_{k=1}^n \frac{1}{k^2}$.

Démontrer que la suite $(S_n)_{n\geq 1}$ converge vers une limite S que l'on précisera.

5. Soient les suites $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$ et $(w_n)_{n\geq 1}$ définies par :

$$\forall n \ge 1, u_n = \sum_{k=1}^n \frac{1}{(2k)^2}, \quad v_n = \sum_{k=0}^n \frac{1}{(2k+1)^2} \quad \text{et} \quad w_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^2}$$

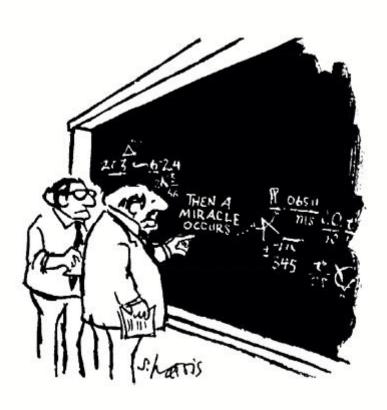
Montrer que ces trois suites sont convergentes et déterminer les valeurs exactes de leurs limites respectivement notées U, V et W.

Problème 2. Étude de deux suites

On suppose que l'entier naturel n est tel que $n \ge 2$.

Soit $f_n(x) = 3x^n \exp(-x^2) - 1 = 3x^n e^{-x^2} - 1$.

- 1. Quel est le signe de $f_n(0)$ et de $f_n(1)$?
- 2. Étudier les variations de f_n sur $[0, +\infty[$. Donner la limite de $f_n(x)$ quand x tend vers $+\infty$. En déduire que f_n s'annule sur $[0, +\infty[$ en deux réels réels notés u_n et v_n qui vérifient $u_n < 1 < v_n$.
- **3**. Quelle est la limite de la suite $(v_n)_{n\geq 2}$?
- **4.** a. Calculer $\exp(-u_n^2)$ en fonction de u_n^n .
 - **b**. En déduire le signe de $f_{n+1}(u_n)$.
 - **c**. Déduire de ce qui précède la monotonie de la suite $(u_n)_{n\geq 2}$.
 - **d**. Montrer que la suite $(u_n)_{n\geq 2}$ est convergente. Soit l la limite.
- 5. Soit g_n définie sur $]0, +\infty[$ par : $\forall x > 0, g_n(x) = \ln(3) + n \ln(x) x^2.$
 - **a** . Soit t > 0. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.
 - **b** . On suppose que $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Conclure.
 - **c**. Soit la suite $(w_n)_{n\geq 2}$ définie par : $\forall n\geq 2,\ w_n=u_n-1$. En utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$, trouver un équivalent simple de w_n .



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."