Intégration

Problème 1. Étude d'une fonction définie par une intégrale

Soit φ la fonction définie sur \mathbb{R}^+ par : $\varphi(x) = \int_0^1 \frac{1}{1+t^x} dt$.

- 1. Calculer $\varphi(0)$, $\varphi(1)$ et $\varphi(2)$.
- 2. Sans utiliser de dérivée, montrer que φ est croissante sur \mathbb{R}^+ .
- 3. Montrer que si x et y sont dans \mathbb{R}^+ avec $x \leq y$, alors : $0 \leq \varphi(y) \varphi(x) \leq \int_0^1 (t^x t^y) dt \leq y x$.
- 4. En déduire que φ est continue sur \mathbb{R}^+ .
- 5. Montrer que pour $x \ge 0$, on a : $1 \varphi(x) = \int_0^1 \frac{t^x}{1 + t^x} dt$.
- 6. En majorant l'intégrale $\int_0^1 \frac{t^x}{1+t^x} \, \mathrm{d}t$, en déduire que $\lim_{x \longrightarrow +\infty} \varphi(x) = 1$.
- 7. (a) Pour $x \in \mathbb{R}^+$, on introduit f_x la fonction définie sur [0,1] par $f_x(t) = \frac{1}{1+t^x}$.
 - i. Montrer que la fonction f_x est de classe C^1 sur]0,1].
 - ii. Pour quelles valeurs de x la fonction f_x est-elle de classe \mathcal{C}^1 en 0?
 - (b) À l'aide d'une intégration par parties, montrer que pour $x \ge 0$: $\varphi(x) = \frac{1}{2} + x \int_0^1 \frac{t^x}{(1+t^x)^2} dt$.
- 8. (a) Exprimer $\int_0^1 \frac{t^x}{(1+t^x)^2} dt$ sous la forme d'une combinaison linéaire de $\varphi(x)$ et $\int_0^1 \frac{1}{(1+t^x)^2} dx$.
 - (b) Montrer alors que : $\int_0^1 \frac{t^x}{4} dt \le \int_0^1 \frac{t^x}{(1+t^x)^2} dt \le \varphi(x) \frac{1}{4}.$
 - (c) Déterminer la pente de la demi-tangente au point d'abscisse 0 pour la courbe représentant φ .
- 9. Esquisser l'allure de la courbe représentative de φ sur $[0, +\infty[$.
- 10. (a) Sans étudier les varations d'une fonction auxilliaire, montrer que : $\forall x \in]-1, +\infty[-\ln(1+x) \leq x]$
 - (b) En utilisant l'expression de la question 5) et une intégration par parties, trouver un équivalent de $\varphi(x) 1$ au voisinage de $+\infty$.

