Résolution de deux équations Exercice n°20 (5) - feuille 3 Exercice n°29 (6) - feuille 3

Énoncé

Exercice 20. Résoudre l'équation suivante :

5.
$$sh(x) - 4sh(2x) + sh(3x) = 0$$

Exercice 29. Résoudre l'équation suivante :

6.
$$\arctan(x) + \arctan(3x) = \frac{\pi}{4}$$

Résolution

2.1Exercice 20 (5)

5. On résout l'équation:

$$sh(x) - 4sh(2x) + sh(3x) = 0$$
 (E)

On a :
$$\operatorname{sh}(2x) = \operatorname{sh}(x+x) = 2\operatorname{sh}(x)\operatorname{ch}(x)$$

 $\operatorname{ch}(2x) = \operatorname{ch}(x+x) = \operatorname{ch}^2(x) + \operatorname{sh}^2(x)$
et : $\operatorname{sh}(3x) = \operatorname{sh}(x+2x) = \operatorname{sh}(x)\operatorname{ch}(2x) + \operatorname{ch}(x)\operatorname{sh}(2x)$
 $= \operatorname{sh}(x)(\operatorname{ch}^2(x) + \operatorname{sh}^2(x)) + \operatorname{ch}(x)(2\operatorname{sh}(x)\operatorname{ch}(x))$
 $= \operatorname{sh}(x)(3\operatorname{ch}^2(x) + \operatorname{sh}^2(x))$
 $= \operatorname{sh}(x)(3\operatorname{ch}^2(x) + (\operatorname{ch}^2(x) - 1))$
 $= \operatorname{sh}(x)(4\operatorname{ch}^2(x) - 1)$

D'où :
$$sh(x) - 4sh(2x) + sh(3x) = sh(x) - 8sh(x)ch(x) + sh(x)(4ch^{2}(x) - 1).$$

$$= sh(x)(4ch^{2}(x) - 8ch(x))$$

$$= 4sh(x)ch(x)(ch(x) - 2)$$

Or : ch(x) > 1.

Par conséquent, on a :
$$(E) \iff (\operatorname{sh}(x) = 0 \text{ ou } \operatorname{ch}(x) = 2)$$

 $\iff (x = 0 \text{ ou } x = \operatorname{Argch}(2) \text{ ou } x = -\operatorname{Argch}(2))$

Les solutions de (E) sont donc : 0, Argch(2) et -Argch(2).

Exercice 29 (6)

6. On résout l'équation:

$$\arctan(x) + \arctan(3x) = \frac{\pi}{4}$$
 (E)

La fonction arctan est définie sur \mathbb{R} . L'équation (E) est donc définie sur \mathbb{R} . On procède par analyse synthèse.

Analyse: On suppose que x est solution de l'équation.

Déterminons les valeurs possibles de x.

On a :
$$\tan(\arctan(x) + \arctan(3x)) = \frac{\tan(\arctan(x)) + \tan(\arctan(3x))}{1 - \tan(\arctan(x))\tan(\arctan(3x))}$$
$$= \frac{x + 3x}{1 - x \cdot 3x} = \frac{4x}{1 - 3x^2}$$

or :
$$\tan\left(\frac{\pi}{4}\right) = 1$$
. Donc : $\frac{4x}{1 - 3x^2} = 1$. D'où : $3x^2 + 4x - 1 = 0$.

Or :
$$3x^2 + 4x - 1 = 3\left(x^2 + \frac{4}{3}x - \frac{1}{3}\right) = 3\left(\left(x + \frac{2}{3}\right)^2 - \frac{7}{9}\right)$$
$$= 3\left(x + \frac{2 + \sqrt{7}}{3}\right)\left(x + \frac{2 - \sqrt{7}}{3}\right)$$

D'où :
$$x = -\frac{2 + \sqrt{7}}{3}$$
 ou $x = \frac{\sqrt{7} - 2}{3}$.

Synthèse: Nous devons déterminer quelles sont les valeurs trouvées qui sont solutions de (E).

(a) Nous déterminons d'abord le nombre de solutions :

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \arctan(x) + \arctan(3x)$.

Les fonctions arctan et $(x \mapsto 3x)$ sont strictement croissantes et continues. Par composée et addition de fonctions continues et strictement croissantes. la fonction f est continue et strictement croissante.

D'autre part, on a :
$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$$
 et $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$. D'où : $\lim_{x \to +\infty} f(x) = \pi$ et $\lim_{x \to -\infty} f(x) = -\pi$.

D'où :
$$\lim_{x \to +\infty} f(x) = \pi$$
 et $\lim_{x \to -\infty} f(x) = -\pi$.

La fonction f est donc une bijection de $\mathbb R$ dans $]-\pi,\pi[$.

Or :
$$\frac{\pi}{4} \in]-\pi,\pi[.$$

L'équation (E) admet donc une unique solution.

(b) Nous devons donc éliminer une des solutions :

Remarquons que $f(0) = 0 < \frac{\pi}{4}$.

Cette solution est donc strictement positive.

Or :
$$-\frac{2+\sqrt{7}}{3} < 0$$
.

1

L'unique solution de
$$(E)$$
 est donc : $\frac{\sqrt{7}-2}{3}$.