1

Quatre primitives Exercice n°1 (12,13,23,27) - feuille 4

Énoncé

Exercice 1. Déterminer les primitives des fonctions suivantes 12. $\frac{2x+1}{(x^2+x+1)^3}$ 13. $\frac{x}{\sqrt{x^2+2}}$ 23. $\frac{1}{\sqrt{x^2+5}}$ 27. $\frac{x^2+2x+1}{2\cos(x)}$

Résolution

12. On a : $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$. Donc, la fonction $\left(x \mapsto \frac{2x+1}{(x^2+x+1)^3}\right)$ est définie sur \mathbb{R} . Soit u la fonction définie par $u(x) = x^2 + x + 1$. On a : u'(x) = 2x + 1. Ainsi : $\frac{2x+1}{(x^2+x+1)^3} = \frac{u'(x)}{u^3(x)}$. Une primitive de $\left(x \mapsto \frac{2x+1}{(x^2+x+1)^3}\right)$ est donc la fonction d'expression : $-\frac{1}{2u^2(x)} = -\frac{1}{2(x^2 + x + 1)^2}.$

> Les primitives de $\left(x \mapsto \frac{2x+1}{(x^2+x+1)^3}\right)$ sont donc les fonctions d'expressions : $-\frac{1}{2(x^2+x+1)^2}+C$ où $C \in \mathbb{R}$.

13. On a : $x^2 + 2 > 0$. La fonction $\left(x \mapsto \frac{x}{\sqrt{x^2+2}}\right)$ est définie sur \mathbb{R} . Soit u la fonction définie par $u(x) = x^2 + 2$. On a : u'(x) = 2x. Ainsi : $\frac{x}{\sqrt{x^2 + 2}} = \frac{u'(x)}{2\sqrt{u(x)}}$.

Une primitive de $\left(x \mapsto \frac{x}{\sqrt{x^2+2}}\right)$ est donc la fonction d'expression : $\sqrt{x^2+2}$.

Les primitives de $\left(x \mapsto \frac{x}{\sqrt{x^2+2}}\right)$ sont donc les fonctions d'expressions : $\sqrt{x^2 + 2} + C$ où $C \in \mathbb{R}$.

23. On a : $x^2 + 5 > 0$ Donc, la fonction $\left(x \mapsto \frac{1}{\sqrt{x^2 + 5}}\right)$. On a: $\frac{1}{\sqrt{x^2 + 5}} = \frac{1}{\sqrt{5}\sqrt{\left(\frac{x}{\sqrt{5}}\right)^2 + 1}} = \frac{1}{\sqrt{5}}\operatorname{Argsh'}\left(\frac{x}{\sqrt{5}}\right).$ Une primitive de $\left(x \mapsto \frac{1}{\sqrt{x^2+5}}\right)$ est donc la fonction d'expression : Argsh $\left(\frac{x}{\sqrt{5}}\right)$.

> Les primitives de $\left(x \mapsto \frac{1}{\sqrt{x^2+5}}\right)$ sont donc les fonctions d'expressions : Argsh $\left(\frac{x}{\sqrt{5}}\right) + C$ où $C \in \mathbb{R}$.

27. La fonction $(x \mapsto (x^2 + 2x + 2)\cos(x))$ est définie sur \mathbb{R} . On calcule : $F(x) = \int_0^x (t^2 + 2t + 2) \cos(t) dt$ pour $x \in \mathbb{R}$.

On fait une intégration par parties en posant :

$$u_1(t) = t^2 + 2t + 2$$
 $v'_1(t) = \cos(t)$
 $u'_1(t) = 2t + 2$ $v_1(t) = \sin(t)$

Les fonctions u_1 et v_1 sont dérivables de dérivées continues.

On obtient: $F(x) = [(t^2 + 2t + 2)\sin(t)]_0^x - \int_0^x (2t + 2)\sin(t) dt$ $=(x^2+2x+2)\sin(x)-\int_{0}^{x}(2t+2)\sin(t) dt$

On fait une intégration par parties en posant :

$$u_2(t) = 2t + 2$$
 $v'_2(t) = \sin(t)$
 $u'_2(t) = 2$ $v_2(t) = -\cos(t)$

Les fonctions u_2 et v_2 sont dérivables de dérivées continues.

On obtient : $F(x) = (x^2 + 2x + 2)\sin(x) + [(2t+2)\cos(t)]_0^x - \int_0^x 2\cos(t) dt$. $=(x^2+2x+2)\sin(x)+(2x+2)\cos(x)-2-[2\sin(t)]_0^x$ $=(x^2+2x+2)\sin(x)+(2x+2)\cos(x)-2-2\sin(x)$ $=(x^2+2x)\sin(x)+(2x+2)\cos(x)-2$

La fonction F est une primitive de $(x \mapsto (x^2 + 2x + 2)\cos(x))$.

Les primitives de $(x \mapsto (x^2 + 2x + 2)\cos(x))$ sont les fonctions d'expressions : $(x^2 + 2x)\sin(x) + (2x + 2)\cos(x) + C$ où $C \in \mathbb{R}$.