Structures algébriques

Exercice 1. Un groupe

Soit E =]-1,1[. Pour tout $(a,b) \in E^2$, on pose $a \star b = \frac{a+b}{1+ab}$.

- 1. Montrer que \star est une loi de composition interne sur E.
- 2. Montrer que (E, \star) est un groupe abélien.

Exercice 2. Préciser dans chacun des cas suivants si (G, \otimes) est un groupe. Le cas échéant, on précisera s'il est commutatif ou non.

- 1. $G = \mathbb{R}$ et $x \otimes y = x + y + 3$.
- 2. $G = \mathbb{R}$ et $x \otimes y = x + y + xy$.
- 3. $G =]-1, +\infty[$ et $x \otimes y = 1 + (x-1)(y-1).$
- 4. $G = \mathbb{R}^2$ et $(x, y) \otimes (x', y') = (x + x', ye^{x'} + y'e^x)$.
- 5. $G = \mathcal{S}_E$ l'ensemble des bijections d'un ensemble E dans lui-même et $\otimes = \circ$.
- 6. G, l'ensemble des applications croissantes et bijectives d'un ensemble ordonné (E, \preceq) et $\otimes = \circ$.
- 7. $G = G_1 \times G_2$ et $(x, y) \otimes (x', y') = (x * x', y \times y')$ où $(G_1, *)$ et (G_2, \times) sont des groupes.
- 8. $G = \mathbb{U}_n$ l'ensemble des racines $n^{\text{ème}}$ de l'unité et \otimes désigne la multiplication des complexes.

Exercice 3. Généralisation du groupe des similitudes

Soit $G = \mathbb{C}^* \times \mathbb{C}$ et $n \in \mathbb{N}$.

On définit sur G la loi de composition interne : $(x,y)\otimes(x',y')=(xx',x^ny'+y)$

- 1. Montrer que G muni de la loi \otimes est un groupe.
- 2. $\mathbb{C}^* \times \mathbb{R}$, $\mathbb{R}^{+*} \times \mathbb{C}$ et $\mathbb{R}^{+*} \times \mathbb{R}$ sont-ils des sous-groupes de (G, \otimes) ?
- 3. On considère ${\mathcal S}$ l'ensemble des similitudes directes de ${\mathbb C}$ muni de la loi de composition.
 - (a) Montrer que (S, \circ) est un groupe.
 - (b) On considère l'application $\varphi: \begin{cases} G \longrightarrow \mathcal{S} \\ (a,b) \longrightarrow s \text{ la similitude de représentation} \\ \text{complexe } z' = az + b \end{cases}$ Montrer que si n = 1, alors l'application φ est un isomorphisme de groupes.

Exercice 4. Deux équations

On considère deux éléments a et b de (G, *), un groupe.

- 1. Résoudre dans G les équations d'inconnue x suivantes : x * a = b et a * x = b.
- 2. Que dire des applications $(x \mapsto a * x)$ et $(x \mapsto x * a)$?

Exercice 5. Équation et morphisme de groupe

Soient $(G_1, *)$ et (G_2, \otimes) deux groupes et $\varphi : G_1 \longrightarrow G_2$ un morphisme de groupe. Soit $b \in G_2$. On considère l'équation d'inconnue $x \in G_1 : (E_b)$ $\varphi(x) = b$.

- 1. (a) Pour quelle valeur de b le noyau $\ker(\varphi)$ de φ est-il l'ensemble des solutions de E_b ?
 - (b) Soit a une solution de (E_b) . A l'aide de $\ker(\varphi)$ et de a, déterminer l'ensemble des solutions de (E_b) .

2. Application:

Soit D:
$$\begin{cases} \mathcal{C}^1(\mathbb{R}) & \longrightarrow & \mathcal{C}^0(\mathbb{R}) \\ f & \longmapsto & f' \end{cases}$$

Soit $g \in \mathcal{C}^0$. On considère l'équation d'inconnue $f \in \mathcal{C}^1(\mathbb{R})$: (E_g) D(f) = g.

- (a) Montrer que D est un morphisme de groupe de $(\mathcal{C}^1(\mathbb{R}), +)$ dans $(\mathcal{C}^0(\mathbb{R}), +)$.
- (b) Déterminer ker(D).
- (c) Que dire de l'ensemble des solutions de (E_g) ? Quel résultat classique vienton de retrouver?

Exercice 6. Centre d'un groupe

Soit (G,*) un groupe. Soit $Z = \{x \in G \mid \forall y \in G \ x * y = y * x\}.$

Montrer que Z est un sous-groupe de G. (Il est appelé centre du groupe G.)

Exercice 7. Morphisme de groupe et commutativité

Soit (G, \otimes) un groupe.

1. Soit
$$f: \left\{ \begin{array}{ccc} G & \longrightarrow & G \\ x & \longmapsto & x^2 \end{array} \right.$$

Montrer que f est un morphisme de groupe si et seulement si G est un groupe abélien.

- 2. Soit $f: \left\{ egin{array}{ll} G & \longrightarrow & G \\ x & \longmapsto & x^{-1} \end{array} \right.$ Montrer que f est un morphisme de groupe si et seulement si G est un groupe abélien.
- 3. Soit f un endomorphisme de G tel que : $\forall (x,y) \in G^2$ $f(x^2y^3) = x^3y^2$. Montrer que G est abélien.

Exercice 8. Anneau de Gauss

On note: $\mathbb{Z}[i] = \{a + \beta b \in \mathbb{C} / (a, b) \in \mathbb{Z}^2 \}.$

- 1. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} . Cette anneau est appelé l'anneau de Gauss.
- 2. On rappelle que les nombres inversibles d'un anneau A sont les éléments $\alpha \in A$ tels que : $\exists \beta \in A \quad \alpha.\beta = \beta.\alpha = 1_A$
 - (a) On considère l'application suivante : $N: \left\{ \begin{array}{l} \mathbb{Z}[\mathrm{i}] & \longrightarrow & \mathbb{N} \\ z & \longmapsto & z\bar{z} \end{array} \right.$ Montrer que : $\forall (z_1, z_2) \in (\mathbb{Z}[\mathrm{i}])^2 \quad N(z_1.z_2) = N(z_1).N(z_2)$
 - (b) Soit $z \in \mathbb{Z}[i]$. Montrer alors que z est inversible dans $\mathbb{Z}[i]$ si, et seulement si, N(z) = 1.
 - (c) En déduire que $\mathbb{Z}[i]$ admet exactement quatre éléments inversibles que l'on précisera.

Exercice 9. Une structure d'anneau sur \mathbb{R}^2

Sur l'ensemble \mathbb{R}^2 on définit deux lois de composition interne de la façon suivante :

$$(x,y) + (x',y') = (x+x',y+y')$$
 et $(x,y) \times (x',y') = (xx',xy'+x'y)$

- 1. Démontrer que \mathbb{R}^2 muni de ces deux opérations possède une structure d'anneau commutatif.
- 2. On note Θ l'élément nul de cet anneau. Démontrer que l'on peut trouver des éléments A et B de \mathbb{R}^2 vérifiant : $A \times B = \Theta$ avec $A \neq \Theta$ et $B \neq \Theta$. Un tel anneau dans lequel un produit de facteurs peut être « nul » sans qu'aucun des facteurs ne le soit est dit non intègre ; A et B sont alors appelés des diviseurs de zéro. Nous rencontrerons de tels anneaux dans le calcul matriciel.
- 3. Déterminer les éléments inversibles de cet anneau.
- 4. A quelle condition un élément de \mathbb{R}^2 est-il le carré d'un autre élément de \mathbb{R}^2 ? Quels sont les éléments de \mathbb{R}^2 dont le carré est égal à Θ ? Le résultat n'est-il pas étonnant?

Exercice 10. Une structure d'anneau sur \mathbb{R}^3

On définit deux lois de composition interne sur \mathbb{R}^3 par les relations suivantes : (x,y,z)+(x',y',z')=(x+x',y+y',z+z') et $(x,y,z)\times(x',y',z')=(xx',xy'+yx',xz'+x'z)$. Montrer que ces deux lois définissent sur \mathbb{R}^3 une structure d'anneau.

Exercice 11. Une structure de corps sur \mathbb{R}

Sur \mathbb{R} , on définit deux lois de composition interne par : $x\oplus y=x+y-1$ et $x\otimes y=x+y-xy$.

Démontrer que $(\mathbb{R}, \oplus, \otimes)$ est un corps.

Exercice 12. Division euclidienne

Si on divise 4294 et 3521 par un même entier positif, on obtient respectivement pour restes 10 et 11. Quel est ce nombre?

Exercice 13. Division euclidienne et opérations

Soient $b \in \mathbb{N}^*$ et $(a_1, a_2) \in \mathbb{Z}^2$.

On note r_1 et r_2 les restes respectifs de la division euclidienne de a_1 et a_2 par b.

- 1. Montrer que $a_1 + a_2$ et $r_1 + r_2$ ont le même reste pour leurs divisions euclidiennes par b.
- 2. Montrer que a_1a_2 et r_1r_2 ont le même reste pour leurs divisions euclidiennes par b.

Exercice 14. Nombres de Fermat

Soit $n \in \mathbb{N}$.

- 1. Montrer que si 2^n+1 est premier, alors il existe $k\in\mathbb{N}$ tel que $n=2^k$. Pour $n\in\mathbb{N}$, on note : $F_n=2^{2^n}+1$. Le nombre F_n est appelé $n^{\text{ème}}$ nombre de Fermat.
- 2. Montrer que $\forall n \in \mathbb{N} \quad F_{n+1} = \left(\prod_{k=0}^{n} F_k\right) + 2$
- 3. En déduire que, pour tout n et m entiers naturels distincts, F_n et F_m sont premiers entre eux.

Exercice 15. Un test de primalité

Soit p un entier naturel. Montrer que p est premier si et seulement si il n'admet pas de diviseurs plus petits que \sqrt{p} .